پیش‌بینی جریان روزانه رودخانه نوران چای با استفاده از مدل ترکیبی شبکه‌های عصبی مصنوعی- تجزیه مؤلفه‌های اصلی

نویسندگان

  • امین عبدی کردانی 2- دانشجوی دکتری، گروه مهندسی عمران آب، دانشکده مهندسی عمران، دانشگاه تبریز
  • سعید خوش طینت کارشناس ارشد، دانشکده عمران، دانشگاه آزاد اسلامی واحد مهاباد
  • مریم شفیعی نجد دانشجوی کارشناسی ارشد، گروه مهندسی عمران آب، دانشکده مهندسی عمران، دانشگاه تبریز
  • یوسف حسن‌زاده استاد، گروه مهندسی عمران آب، دانشکده مهندسی عمران، دانشگاه تبریز
چکیده مقاله:

پیش­­بینی دقیق جریان روزانه، نقش به­سزایی در مدیریت کارآمد منابع آب ایفا می­کند. به این منظور در این تحقیق سعی شده است که جهت مدل­سازی هرچه دقیق­تر فرآیند پیش‌بینی جریان روزانه رودخانه نوران­چای واقع در حوضه آتشگاه، از شبکه­های عصبی مصنوعی (ANN) استفاده ­گردد. همچنین به‌منظور افزایش کارآیی ANN از تجزیه مؤلفه‌های اصلی (PCA) جهت پیش‌پردازش داده­های ورودی استفاده گردیده و درنهایت داده­های خروجی حاصل، با نتایج مدل رگرسیون خطی چند متغیره (MLR) مقایسه شده است. نتایج نشان داد که مدل ترکیبی ANN-PCA در قیاس با مدل ANN منفرد و MLR از دقت بسیار بالایی برخوردار است. به­طوری­که نتایج معیارهای ارزیابی شامل ضریب همبستگی (CC)، ضریب راندمان (EC) و جذر میانگین مربعات خطاها (RMSE) برای مدل ترکیبی ANN-PCA (در مرحله صحت­سنجی) برابر 9959/0=CC، 9905/0=EC و 0071/0=RMSE، مدل ANN منفرد (در مرحله صحت­سنجی) برابر 9093/0=CC، 8269/0=EC و 0405/0=RMSE و مدل MLR برابر 8866/0=CC، 7860/0=EC و 0926/0=RMSE به‌دست آمدند. همچنین استفاده از PCA به‌عنوان یک روش مؤثر جهت پیش‌پردازش داده­ها، با ایجاد مؤلفه‌های مستقل از هم موجب از بین رفتن هم خطی چندگانه می­شود. بنابراین PCA موجب افزایش کارآیی مدل ANN می­گردد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی جریان روزانه رودخانه نوران چای با استفاده از مدل ترکیبی شبکه های عصبی مصنوعی- تجزیه مؤلفه های اصلی

پیش­­بینی دقیق جریان روزانه، نقش به­سزایی در مدیریت کارآمد منابع آب ایفا می­کند. به این منظور در این تحقیق سعی شده است که جهت مدل­سازی هرچه دقیق­تر فرآیند پیش بینی جریان روزانه رودخانه نوران­چای واقع در حوضه آتشگاه، از شبکه­های عصبی مصنوعی (ann) استفاده ­گردد. همچنین به منظور افزایش کارآیی ann از تجزیه مؤلفه های اصلی (pca) جهت پیش پردازش داده­های ورودی استفاده گردیده و درنهایت داده­های خروجی حا...

متن کامل

تولید مصنوعی جریان رودخانه با استفاده از شبکه‌های عصبی مصنوعی

در این مطالعه قابلیت مدل‎های شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی می‌شود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه‌ عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سری‌های بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با ...

متن کامل

پیش‌بینی جریان روزانه رودخانه اهرچای با استفاده از مدل قوانین M5 و مقایسه آن با شبکه‌های عصبی مصنوعی المانی (ENN)

برآورد صحیح آبدهی رودخانه‌ها یکی از موارد مهم در پیش‌بینی خشکسالی، سیلاب، طراحی سازه­‌های آبی، بهره‌برداری از مخازن سدها و کنترل رسوب می‌باشد. از این‌رو متخصصان علوم مهندسی آب جهت برآورد دقیق جریان، از روش‌های هوشمند مانند شبکه‌های عصبی مصنوعی و روش‌های مختلف داده‌کاوی بهره گرفته‌اند. در این مطالعه، جهت پیش­بینی جریان روزانه رودخانه اهرچای، از روش­های شبکه عصبی مصنوعی المانی (ENN) و قوانین درخت...

متن کامل

مدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی

Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of  this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...

متن کامل

پیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)

پیش­بینی دقیق جریان در رودخانه­ها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالی­ها است. به دلیل اهمیت پیش­بینی جریان رودخانه، در این تحقیق جریان روزانه رودخانه­ی باراندوزچای در دو ایستگاه بی­بکران و دیزج طی یک دوره­ی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) می­باشد، پیش­بینی گرد...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 25  شماره 3

صفحات  53- 63

تاریخ انتشار 2015-11-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023